If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-4.9x^2+10x+1200
We move all terms to the left:
0-(-4.9x^2+10x+1200)=0
We add all the numbers together, and all the variables
-(-4.9x^2+10x+1200)=0
We get rid of parentheses
4.9x^2-10x-1200=0
a = 4.9; b = -10; c = -1200;
Δ = b2-4ac
Δ = -102-4·4.9·(-1200)
Δ = 23620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{23620}=\sqrt{4*5905}=\sqrt{4}*\sqrt{5905}=2\sqrt{5905}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{5905}}{2*4.9}=\frac{10-2\sqrt{5905}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{5905}}{2*4.9}=\frac{10+2\sqrt{5905}}{9.8} $
| −5(x−1)=40 | | 5x+3(x-6)=-144 | | -5(r-3)+8r=2(5+4r) | | 9d−3d=6 | | 26.99x=100x | | 8x+5=2x+30 | | -1/8r=3/56 | | (2x)(6x)=900 | | 100x=26.99x | | F(x)=3x3+9x | | 0.13(x+3000)=6890 | | -3(p-8)=2(-p+6) | | x+(x*5/100)=150 | | 1/3x+21=85 | | 35/7=25/d | | 6(1+p)=5(p+3) | | 36x^2+12=0 | | 2/5(w-7)=18 | | 4y-12=104 | | 8x+43=180 | | 2x+6.3=14.1 | | ^(2)+52z=0 | | -3(8+7v)=16-v | | (4/3)x-(2/5)=(7/5)x-(1/10) | | 14x+77=105 | | x=16=16 | | 6y-0=9 | | 12+6y=6 | | q+14=89q | | x=8.8=14.2 | | 4x=20×-24 | | 35+2n=8(4n-4)=7 |